PO

F’RST FTC Pro '
TE CH ’ For Beginngegmmmg oulde

CHALLENGE

What is FTC Programming?

Programming is the “brain" of your
robot, glum% it life and purpose on
the competition field. It's how you
tell your robot what to do, when to
do it, and how to react to its
environment.

Two main modes:
TeleOp and Autonomous

Controls movement and mechanisms

Your code controls every aspect, from
precise movements to operating complex
mechanisms like arms and grippers. Without
programming, your robot is just a collection
of parts.

TeleOp vs. Autonomous

FTC matches are divided into two distinct periods, each requiring a different programming approach.

0 0

TeleOp Mode Autonomous Mode

This is the driver-controlled period where you use a In this period, the robot acts completely independently. You
gamepad to operate the robot. Your code translates joystick pre-program a sequence of actions for the robot to perform,
and button inputs into robot actions, allowing for real-time such as moving to specific locations, picking up objects, or

strategic play. scoring points, all without human input.

ST RIKE

OpMode Structure

An OpMode is the core of your robot's program. It defines the specific set of instructions your robot will follow. Every OpMode has a clear structure to ensure organised and predictable
behaviour.

01 02 03

The OpMode runOpMode() Method while{opModelsActive()) Loop

Your main program file, containing all instructions for a This is where your robot initialises and waits for the match to Once the match begins, the code inside this loop

specific robot behaviour (e.q., "Red_Autonomous” or start. All setup code runs here, but the robot won't move continuously executes. This is where you put your robot's
"Driver_Controlled"). until waitForStart() is called. primary actions and decision-making logic for both TeleOp

and Autonomous.

OpMode Start runOpMode() waitForStart() while(opModelsActive()
) Exit OpMode

ST RIKE

HardwareMap

The HardwareMap is your code's bridge to the physical components of your robot. It allows
you to name and reference motors, servos, and sensors from within vour oroaram.

Think of it as a dictionary that connects the

descriptive names you use in your code (e.g.,
"Ieft_motor"? to the actual hardware ports on

your Control Hub or Expansion Hub.

Connects code to real hardware

Used for motors, servos, and sensors

e Ensures your code knows which physical

component to control

Mecanum Drive Basics

Mecanum wheels offer incredible maneuverability, allowing your robot to move in any
direction without turning its body. This can be a huge advantage in dynamic game
scenarios.

1 Forward & Backward

All wheels spin in the same direction.

Strafe (Side-to-Side)

Wheels spin in opposing diagonal pairs, allowing lateral movement.

Rotation
3

Wheels on one side spin opposite to the other, making the robot pivot.

A Combined Movements

Mix and match inputs for diagonal or curved paths.

Speed Control

Controlling your robot's speed is crucial for precision and strategy. Sometimes you need raw power; other times, delicate movements are key.

Turbo Mode

Full power for quick travel across the field or pushing opponents. Use when speed

is paramount.

Slow Mode

Reduced power for fine adjustments, aligning with game elements, or precise
scoring. Essential for accuracy.

Implementing speed control with gamepad buttons allows drivers to switch between
modes instantly, adapting to different game situations.

Servos and Mechanisms

Beyond driving, your robot needs to interact with game elements. Servos are the workhorses for these mechanisms,

providing controlled angular movement.

Claw Mechanism U Lift System Turret

Used to grab and Raises and lowers Allows mechanisms to

release game objects. objects or robot rotate horizontally,

g A servo can precisely components to expanding the robot's
open and close the different heights for reach and aiming
claw. scoring or navigating capabilities.

obstacles.

Programming servos involves setting specific positions (angles) for them to move to. This allows for repeatable and

accurate mechanism operation.

ST RIKE

Autonomous Basics

Crafting an effective autonomous period requires precise, pre-programmed movements. This is achieved using encoders on your motors.

Encoder-Based Movement RUN_TO_POSITION
Encoders are sensors on motors that count rotations, allowing the robot to know exactly how far This motor mode instructs a motor to run until it reaches a specific encoder target position. It's
its wheels have turned. This enables accurate distance-based movement. fundamental for precise autonomous driving.

Reset Encoders

Drive Forward

Summary & Beyond

You've taken the first step into the exciting world of FTC programming!

Key Concepts Structure is Key

We've covered the robot's brain, Understanding the foundational
different control modes, elements makes complex
OpMode structure, hardware programming tasks much more
communication, and basic manageable and less daunting.

movement control.

Keep Learning!

Programming is an iterative process. Experiment, troubleshoot, and
continually refine your code to achieve robot excellence.

Programming becomes easy with structure. Now go

ISTRIKE

forth and create!

